
The brown tail moth (hereafter referred as to BTM),
Euproctis chrysorrhoea (L.), is a univoltine pest that caus-
es severe damage to forest trees, especially oaks, in cen-
tral and southern Europe, north Africa, central Asia,
north America and in some areas of England (Alford,
1995). The pest has also been reported from northern
provinces and north-west areas of Iran (Abaei, 2000). In
Arasbaran forests, north-west Iran, the moth is the most
important defoliator of oak trees (Nikdel et al., 2002).
The pest overwinters as larvae in colonies that are en-
closed within webbed nests of white silk tightly woven
around a leaf in trees or shrubs. The nests are spun in the
early autumn, contain 250 to 400 larvae, and remain firm-
ly attached to twigs or small branches through the winter
and early spring. The webs are often confused with silken
structures formed by other less serious species of moths
(Grill, 1986; Bertucci, 1994). The larval stage of this in-
sect feeds on the foliage of hardwood trees and shrubs in-
cluding oak, shadbush, apple, cherry, beech, plum, and
dogrose. Larval feeding causes reduction of growth and
occasional mortality of valued trees and shrubs.

Entomopathogenic nematodes are attractive for use in
biological control programmes of insects because numer-
ous species are commercially available and have been
used successfully for the control of a variety of insect pests
(Georgis et al., 2006). Due to their sensitivity to UV light
and desiccation, nematodes are most effective against
pests in soil or other protected environments (Kaya and
Gaugler, 1993). Based on available literature, there are no

data on the infectivity of Steinernematidae and Het-
erorhabditidae nematodes against the BTM, but a few
records show the infection of the pest with mermithids
(Demirbag and Yaman, 1999; Nikdel et al., 2002).

Despite the occurrence of many insect pests in envi-
ronmentally sensitive forest areas, the use of EPNs in
forest pest management has not been widely established
(Sanders and Webster, 2000). The infectivity of EPN is
influenced by temperature, moisture and host finding
by the nematode (Lewis et al., 2006). Therefore, EPNs
are ideally suited to attack overwintering larvae in a
cryptic habitat and nematode infectivity can be opti-
mized by applying the IJs to the most vulnerable insect
stage, which usually is the larval stage that occurs in soil
or in a similar moist and cryptic habitat. Such environ-
mental conditions during the life cycle of BTM are
found when the third instar larvae remain for about 8
months of the year (from late August through May) ag-
gregated within the overwintering silky nests. At other
times, appropriate formulations of the nematodes can
be used against individual larvae (fourth and fifth in-
stars) of the pest that are not in the nests.

In this study, we evaluated the susceptibility of differ-
ent larval instars of BTM collected from Arasbaran
forests against two Iranian isolates of EPN under labo-
ratory conditions.

MATERIALS AND METHODS

Nematodes. Two Iranian species of EPNs, Het-
erorhabditis bacteriophora Steiner, isolate IRAZ5, and
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Steinernema carpocapsae Weiser, isolate IRAZ9, recov-
ered from soil samples collected from Arasbaran forests
in the north-west of Iran, were cultured in Galleria mel-
lonella L. last instar larvae at 24 °C. Infective juveniles
(IJ) were extracted in White traps, according to the pro-
cedure described by Woodring and Kaya (1988), and
stored at 7 °C. A maximum concentration of 5,000 IJs
per ml of distilled water was prepared four to five days
before use. To adjust nematode concentrations to the
tested rates, serial dilutions were made (Glazer and
Lewis, 2000). At the time of application, nematode via-
bility was at least 95% in all experiments.

Insects. Overwintering third instar larvae, enclosed
within the webbed nests, were collected on the domi-
nant species of oak trees, Quercus petraea (Mattuschka)
Liebl. from Arasbaran forests in early spring. The nests
were placed in polystyrene boxes (20 cm × 10 cm × 5
cm) with new leaves of the host tree at 22-23 °C and
65% RH. After two days of feeding on the leaves, the
required number of third instar larvae were taken from
the boxes and the remainder were reared for longer in
order to obtain fourth and fifth instar larvae.

Pathogenicity of EPNs. Heterorhabditis bacteriophora
and S. carpocapsae were tested against third, fourth and
fifth instar larvae of E. chrysorrhoea. Wells of 24-well
plates lined with filter paper were used for all treat-
ments in the evaluation of EPN pathogenicity. Six rates
of the EPN (0; 500; 1,000; 1,500; 3,000 and 5,000
IJs/ml) as aqueous suspension (150 µl) were deposited
on the filter paper, using an Eppendorf micropipette.
Control wells of each treatment received only 150 µl of
distilled water. The browntail moth larvae were trans-
fered to the wells of the plates according to each treat-
ment and were covered with caps (three larvae of third
or fourth instar and two larvae of fifth instar larvae were
added to the wells, separately). Data on insect mortality
were recorded after 24, 48, 60 and 72 hours. Such that
dead insects were dissected to be sure that they had
been killed following nematode infection. 

Each experiment was replicated three times. In each
replicate, 216 third and fourth instars and 144 fifth in-
star larvae were used for each nematode species and
rate combinations.

Statistical analysis. Mortality data were normalized by
square root transformation. The quantity (concentra-
tion) of IJ per ml of distilled water was transformed log-
arithmically. The significance of the effects of the factors
species, larval instar and concentration were analyzed
by analysis of variance (ANOVA) using the SAS pro-
gramme. The level at which all analyses were considered
significant was P<0.05. Probit analysis of percent mor-
talities was also performed to estimate LC50s.

RESULTS AND DISCUSSION

The results showed that, on the fourth and fifth lar-

val instars of E. chrysorrhoea, all concentrations of S.
carpocapsae and, on the third larval instar, only its 500
IJs/ml concentration were more virulent than treat-
ments with H. bacteriophora (Fig. 1). Greatest mortality
by both EPNs occurred with fifth instar larvae with
5,000 IJs/ml (Fig. 1C). Analysis of variance revealed
that the factors larval instar (F = 202, df = 2, P<.0001),

4

Fig. 1. Nematode induced mortality of A) third instar, B)
fourth instar and C) fifth instar larvae of the brown tail moth,
Euproctis chrysorrhoea (L.). Within each trial, bars (mean) of
each nematode species followed by the same letter are not sig-
nificantly different (P = 0.05) according to Duncan’s Multiple
Range Test for mortality.
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nematode species (F = 457, df = 1, P<.0001), and con-
centration (F = 4514, df = 5, P<.0001), had significant
effects on larval mortality. With increasing concentra-
tions of the nematodes larval mortality increased ac-
cordingly. From probit analysis, LC50s of H. bacterio-
phora and S. carpocapsae for third, fourth and fifth instar
larvae of E. chrysorrhoea were obtained. Regression
analysis of the dose × mortality response showed signifi-
cant relationships for both nematodes (Table I). Total
mortality percentages of third, fourth and fifth instar
larvae were 49.7, 59.8 and 70.3, respectively. The overall
mean larval mortality caused by S. carpocapsae was
65.5% compared to 54.3% for H. bacteriophora.

Cumulative mortality percentage of E. chrysorrhoea
larvae 60 h after treatment was significantly larger with
S. carpocapsae than with H. bacteriophora. No mortality
by any rate of H. bacteriophora was recorded until 24 h,
whereas 97% of total mortality occurred between 24 and
48 h, while S. carpocapsae caused 75% of total mortality
between 48 and 72 h, thus indicating that mortality of
the pest larvae occurred faster with H. bacteriophora.

A mean of 5.5 S. carpocapsae adults (female) and four
adults (female) of H. bacteriophora were recovered from
each dissected BTM larva cadaver after 72 h (Fig. 2).
Furthermore, the monitoring of the emergence of EPN
IJs from some of the dead BTM larvae indicated that S.
carpocapsae and H. bacteriophora were able to complete
their life cycles in the BTM host. However, the total de-
velopmental time from infection to emergence of IJs
was different for the two nematode species: 5 and 7
days after the death of the BTM larvae by S. carpocapsae
and H. bacteriophora, respectively.

All the above demonstrates that S. carpocapsae is
more virulent to E. chrysorrhoea larvae than H. bacterio-
phora, especially to fourth and fifth instar larvae (F =
457.17, P<0.0001). However, in addition to nematode
species, symbiotic bacteria, insect age and other factors
are involved in the virulence of EPNs. It is likely that
the different host-finding strategies exhibited by the
ambusher H. bacteriophora and the cruiser S. carpocap-
sae is one of the most important reasons for the ob-
served differences. Steinernema carpocapsae, having
cruiser behaviour, has more contact with the host as
compared to H. bacteriophora. On the other hand, the
mean mortality (51.6%) in third instar larvae caused by

H. bacteriophora was greater than that caused by S. car-
pocapsae (47.7%) in the same instar.

Steinernema carpocapsae and H. bacteriophora have
been evaluated against and are infective toward a wide
range of insect pests (Kaya and Gaugler, 1993). Howev-
er, there are no documented reports on the infectivity of
EPNs upon BTM larvae with which to compare our re-
sults. EPNs have been found highly infective against a
number of other Lepidoptera (Williams et al., 2002;
Cottrell and Shapiro-Ilan, 2006; McKern et al., 2007).
Shapiro-Ilan and Cottrell (2006) found that steinerne-
matids were more virulent toward the lesser peach tree
borer, Synanthedon pictipes Grote et Robinson (Lepi-
doptera: Sesiidae), than the heterorhabditids under lab-
oratory conditions, and field applications of S. carpocap-
sae and H. bacteriophora reduced the numbers of rasp-
berry crown borer, Pennisetia marginata Harris (Lepi-
doptera: Sesiidae).

The results of several studies such as those of Belair et
al. (1999) and Bruck et al. (2008), who assayed the activ-
ity of EPNs against Choristoneura rosaceana (Harris)
(Tortricidae) and Synanthedon bibionipennis (Bioduval)
(Sesiidae), respectively, are similar to ours. These authors
found that, for most of the lepidopteran larvae, insect
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Table I. LC50 of Steinernema carpocapsae and Heterorhabditis bacteriophora applied against three larval in-
stars of Euproctis chrysorrhoea at different concentrations of nematodes carried out in the 24-well plates.

Nematode Larval instar LC50 R2 Mean  mortality (%)

third 2236 0.17 51.62

fourth 2138 0.87 52.06H. bacteriophora

fifth 1592 0.82 59.23
third 4472 0.03 47.71

fourth 652 0.22 67.49S. carpocapsae
fifth 423 0.79 81.31

Fig. 2. Dissected dead fifth instar larva of E. chrysorrhoea ex-
posed to H. bacteriophora that shows many of adult (female)
nematodes 72 hours after death.
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death rates also increased with increasing larval instar.
Based on the results of this study, both nematode

species should be effective at controlling BTM larvae.
However, while S. carpocapsae was highly effective
against fourth and fifth instar larvae, H. bacteriophora
was highly effective on third instar larvae. Since the pest
larvae of the fourth and fifth instars are active and
found individually on the host trees, their control using
the cruiser S. carpocapsae would probably be better. On
the other hand, third instar larvae overwinter in non-
motile colonies that are enclosed within webbed nests
of white silk tightly woven around a leaf in trees or
shrubs (each nest containing 250 to 400 larvae), from
early autumn to early the following spring. Therefore,
using H. bacteriophora with ambusher behaviour should
be better against third instar larvae.
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